Log In    |    Join IASS    |    Online Journal    |    Proceedings    |    Directory    |    Events    |    News

Online IASS Proceedings

IASS 2016 Tokyo Symposium: Spatial Structures in the 21st Century


IASS Symposium 2016

SESSION: Metal Spatial Structures

Buckling strength maximization approach for free-form of single layer reticulated shells

< Table of Contents for Metal Spatial Structures
  • Proceedings Name: IASS 2016 Tokyo Symposium: Spatial Structures in the 21st Century
  • ISSN: (Electronic Version) 2518-6582
  • Session: Metal Spatial Structures
  • Pages: 9
  • Title: Buckling strength maximization approach for free-form of single layer reticulated shells
  • Author(s): Yuji Takiuchi, Shiro Kato, Shoji Nakazawa
  • Keywords: steel reticulated shells, shape optimization, buckling strength, genetic algorithm
Abstract
In this paper, a scheme of shape optimization is proposed for obtaining the maximum strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to the strength, several different optimizations using GA are applied to shallow steel single layer reticulated shells. The objective functions to be searched and compared are, respectively, strain energy minimization, linear buckling load maximization, initial yield load maximization, and buckling strength maximization. The buckling strength as a target for the fourth optimization is evaluated based on Modified Dunkerley Formula. With respect to the obtained free-forms based on the four optimization schemes, elasto-plastic buckling behaviour is investigated. From comparison, it is confirmed that the strain energy minimization approach is rather effective to obtain a large buckling strength, while the other three approaches are much effective in obtaining high buckling strength.

Read the complete paper (pdf) (requires membership)
© IASS All rights reserved.
IASS · CEDEX - Laboratorio Central de Estructuras y Materiales · C/ Alfonso XII, 3 · 28014 Madrid, Spain     tel. 34 91 335-7409; fax: 335-7422
Site Design & Programming
by World Design Group, Inc.