Log In    |    Join IASS    |    Online Journal    |    Proceedings    |    Directory    |    Events    |    News

Online IASS Proceedings

IASS 2016 Tokyo Symposium: Spatial Structures in the 21st Century


IASS Symposium 2016

SESSION: Computational Methods

Minimization of sound radiation in doubly curved shallow shells by means of structural stiffness

< Table of Contents for Computational Methods
  • Proceedings Name: IASS 2016 Tokyo Symposium: Spatial Structures in the 21st Century
  • ISSN: (Electronic Version) 2518-6582
  • Session: Computational Methods
  • Pages: 10
  • Title: Minimization of sound radiation in doubly curved shallow shells by means of structural stiffness
  • Author(s): Tomas Mendez Echenagucia, Bert Roozen, Philippe Block
  • Keywords: sound radiation, Rayleigh integral, genetic algorithms, finite element analysis
Abstract
A large amount of the embedded energy of buildings is due to their structures. Consequently, designers have been developing lighter and material efficient structures. However, lightweight structures are vulnerable to aerial and structure-borne noise transmission, especially for the lower frequencies. Sound insulation from environmental noise or footfall is commonly addressed by increasing the mass of the structure, resulting in inefficient constructions. In the lower frequency range, structural stiffness plays a significant role in preventing sound transmission. This paper studies the relationship between stiffness and the acoustical insulation properties of shallow structural shells. The sound radiation of doubly curved shells, under point loads, is estimated by computing the surface normal velocity using Finite Element Method and the radiated sound power using the Rayleigh Integral. The paper shows the potential of optimizing shallow shells for sound transmission by means of their shape, the distribution of mass, and the topology of stiffening ribs.

Read the complete paper (pdf) (requires membership)
© IASS All rights reserved.
IASS · CEDEX - Laboratorio Central de Estructuras y Materiales · C/ Alfonso XII, 3 · 28014 Madrid, Spain     tel. 34 91 335-7409; fax: 335-7422
Site Design & Programming
by World Design Group, Inc.