Log In    |    Join IASS    |    Online Journal    |    Proceedings    |    Directory    |    Events    |    News

Online IASS Proceedings

IASS-SLTE Symposium 2014: Shells, Membranes and Spatial Structures: Footprints


IASS Symposium 2014

SESSION: General 9: Computational Tools, Shape Finding and Optimization

Optimum design of a space truss system using Quantum-inspired Evolution Algorithm

< Table of Contents for General 9: Computational Tools, Shape Finding and Optimization
  • Proceedings Name: IASS-SLTE Symposium 2014: Shells, Membranes and Spatial Structures: Footprints
  • ISSN: (Electronic Version) 2518-6582
  • Session: General 9: Computational Tools, Shape Finding and Optimization
  • Title: Optimum design of a space truss system using Quantum-inspired Evolution Algorithm
  • Author(s): Sudeok SHON, Euishin KWAK, Seungjae LEE
  • Keywords: quantum-inspired evolution algorithm, quantum-bit, optimum structural design, planar truss, minimum weight design
Abstract
With the advent of quantum computer, the development of quantum-inspired search algorithms and their engineering-problem applications have emerged as one of the most interesting research topics. These algorithms find optimal values with the operators such as quantum-gate by using quantum-bit superposed basically by zero and one. In this process, the balance between the two features of exploration and exploitation can be kept easily. So, this paper is to propose an optimum design program for planar truss structures based on quantum-inspired evolution algorithm. The objective function consists of the weight of the structures, and the design variables are the cross-section areas being subjected to displacement and internal force. 10-bar and 17-bar planar truss model are adopted as numerical example.

Read the complete paper (pdf) (requires membership)
© IASS All rights reserved.
IASS · CEDEX - Laboratorio Central de Estructuras y Materiales · C/ Alfonso XII, 3 · 28014 Madrid, Spain     tel. 34 91 335-7409; fax: 335-7422
Site Design & Programming
by World Design Group, Inc.